Alban City School Calculation Policy

Rationale

This policy outlines the progression through written strategies for addition, subtraction, multiplication and division in line with the new National Curriculum commencing September 2014.

As children move at the pace appropriate to them, teachers will be presenting strategies and equipment appropriate to children's level of understanding. However, it is expected that the majority of children in each class will be working at age-appropriate levels as set out in the National Curriculum 2014 and in line with school policy.

The importance of mental mathematics

While this policy focuses on written calculations in mathematics, we recognise the importance of the mental strategies and known facts that form the basis of all calculations. The following checklists outline the key skills and number facts that children are expected to develop throughout the school.

To add and subtract successfully, children should be able to mentally:

- recall all addition pairs to $9+9$ and number bonds to 10
- recognise addition and subtraction as inverse operations
- add mentally a series of one digit numbers (e.g. $5+8+4$)
- add and subtract multiples of 10 or 100 using the related addition fact and their knowledge of place value (e.g. $600+700,160-70$)
- partition 2 and 3 digit numbers into multiples of 100,10 and 1 in different ways (e.g. partition 74 into $70+4$ or $60+14$)
- use estimation by rounding to check answers are reasonable

To multiply and divide successfully, children should be able to mentally:

- add and subtract accurately and efficiently
- recall multiplication facts to $12 \times 12=144$ and division facts to $144 \div 12=12$
- Use multiplication and division facts to estimate how many times one number divides into another etc.
- know the outcome of multiplying by 0 and by 1 and of dividing by 1
- understand the effect of multiplying and dividing whole numbers by 10,100 and later 1000
- recognise factor pairs of numbers (e.g. that $15=3 \times 5$, or that $40=10 \times 4$) and increasingly able to recognise common factors
- derive other results from multiplication and division facts and multiplication and division by 10 or 100 (and later 1000)
- notice and recall with increasing fluency inverse facts
- partition numbers into 100 s, 10 s and 1 s or multiple groupings
- understand how the principles of commutative, associative and distributive laws apply or do not apply to multiplication and division
- understand the effects of scaling by whole numbers and decimal numbers or fractions
- understand correspondence where n objects are related to m objects
- investigate and learn rules for divisibility

Progression in addition and subtraction EYFS and Years 1, 2 and 3

Addition and subtraction are connected.

Part	Part
Whole	

Addition names the whole in terms of the parts and subtraction names a missing part of the whole.

Count one set, then the other set. Combine the sets and count again. Starting at 1 . Counting along the bead bar, count out the 2 sets, then draw them together, count again. Starting at 1 .

Combining two sets (augmentation)

This stage is essential in starting children to calculate rather than counting
Where one quantity is increased by some amount. Count on from the total of the first set, e.g. put 3 in your head and count on 2. Always start with the largest number.
Counters:

Start with 7, then count on 8,9,10,11, 12
Bead strings:

Subtraction

EYFS/Y1

Taking away (separation model)

Where one quantity is taken away from another to calculate what is left.
$7-2=5$
\bigcirc

Multilink towers - to physically take away objects.

Finding the difference (comparison model)

Two quantities are compared to find the difference.
$8-2=6$
Counters:

$0 \rightarrow$	0	
0	\rightarrow	0
0		
0		
0		
0		
0		
0		

Bead strings:

Make a set of 8 and a set of 2 . Then count

Bridging through 10s

This stage encourages children to become more efficient and begin to employ known facts.

Years 1 and 2 onwards

Bead string:

$7+5$ is decomposed / partitioned into $7+3$ +2 .
The bead string illustrates 'how many more to the next multiple of 10?' (children should identify how their number bonds are being applied) and then 'if we have used 3 of the 5 to get to 10, how many more do we need to add on? (ability to decompose/partition all numbers applied)

Number track:

Steps can be recorded on a number track alongside the bead string, prior to transition to number line.

Number line

Bead string:

12-7 is decomposed / partitioned in $12-2$ -5 .
The bead string illustrates 'from 12 how many to the last/previous multiple of 10 ?' and then 'if we have used 2 of the 7 we need to subtract, how many more do we need to count back? (ability to decompose/partition all numbers applied)

Number Track:

Steps can be recorded on a number track alongside the bead string, prior to transition to number line.

Number Line:

Counting up or 'Shop keepers' method

Bead string:

12-7 becomes $7+3+2$.
Starting from 7 on the bead string 'how many more to the next multiple of 10 ?' (children should recognise how their number bonds are being applied), 'how many more to get to 12 ?'.

Number Track:

Compensation model (adding 9 and 11) (optional)

This model of calculation encourages efficiency and application of known facts (how to add ten)
$7+9$
Bead string:

Children find 7 , then add on 10 and then adjust by removing 1 .

Number line:

18-9
Bead string:

Children find 18 , then subtract 10 and then adjust by adding 1.

Number line:

Working with larger numbers

Tens and ones + tens and ones

Ensure that the children have been transitioned onto Base 10 equipment and understand the abstract nature of the single 'tens' sticks and 'hundreds' blocks Year 2

Partitioning (Aggregation model)

$34+23=57$
Base 10 equipment:

Children create the two sets with Base 10 equipment and then combine; ones with ones, tens with tens.

Partitioning (Augmentation model)

Base 10 equipment:
Encourage the children to begin counting

Take away (Separation model)

$57-23=34$
Base 10 equipment:
Children remove the lower quantity from the larger set, starting with the ones and then the tens. In preparation for formal decomposition.

Number Line:
from the first set of ones and tens, avoiding counting from 1. Beginning with the ones in preparation for formal columnar method.

Number line:

At this stage, children can begin to use an informal method to support, record and explain their method. (optional)

At this stage, children can began to use an informal method to support, record and explain their method (optional)

Bridging with larger numbers

Once secure in partitioning for addition, children begin to explore exchanging. What happens if the ones are greater than 10? Introduce the term 'exchange'. Using the Base 10 equipment, children exchange ten ones for a single tens rod, which is equivalent to crossing the tens boundary on the bead string or number line.

Base 10 equipment:
$37+15=52$

Discuss counting on from the larger number irrespective of the order of the calculation.

Base 10 equipment:
$52-37=15$

Expanded Vertical Method (optional)

Children are then introduced to the expanded vertical method to ensure that they make the link between using Base 10 equipment, partitioning and recording using this expanded vertical method. Year 3

Base 10 equipment:
$67+24=91$

Base 10 equipment:
$91-67=24$

Progression in Multiplication and Division

Multiplication and division are connected. Both express the relationship between a number of equal parts and the whole.

Part	Part	Part	Part
Whole			

The following array, consisting of four columns and three rows, could be used to represent the number sentences: -
$3 \times 4=12$,
$4 \times 3=12$,
$3+3+3+3=12$
$4+4+4=12$.

And it is also a model for division
$12 \div 4=3$
$12 \div 3=4$
$12-4-4-4=0$
$12-3-3-3-3=$

Multiplication	Division
EYFS/Year 1	EYFS/Year 1
Early experiences	Children will understand equal groups and share objects out in play and problem solving. They will count in 2s, 10s and 5 s.
Children will have real, practical experiences of handling equal groups of objects and counting in 2s, 10s and 5s. Children work on practical problem solving activities involving equal sets or groups.	

| |
| :--- | :--- |
| Year 1 onwards |
| Repeated addition (repeated aggregation) |
| 3 times 5 is $5+5+5=15$ or 5 lots of 3 or 5×3 |
| Children learn that repeated addition can |
| be shown on a number line. |

	Grouping involving remainders Children move onto calculations involving remainders. $13 \div 4=3 r 1$ Or using a bead string see above.
Year 2 onwards Commutativity Children learn that 3×5 has the same total as 5×3. This can also be shown on the number line. $\begin{aligned} & 3 \times 5=15 \\ & 5 \times 3=15 \end{aligned}$	Year 2 onwards Children learn that division is not commutative and link this to subtraction.
Year 1 onwards Arrays Children learn to model a multiplication calculation using an array. This model supports their understanding of commutativity and the development of the grid in a written method. It also supports the finding of factors of a number.	Year 1 onwards Children learn to model a division calculation using an array. This model supports their understanding of the development of partitioning and the 'bus stop method' in a written method. This model also connects division to finding fractions of discrete quantities.

Year 2 onwards

Inverse operations

Trios can be used to model the 4 related multiplication and division facts. Children learn to state the 4 related facts.
$3 \times 4=12$
$4 \times 3=12$
$12 \div 3=4$
$12 \div 4=3$
Children use symbols
to represent unknown numbers and complete equations using inverse operations. They use this strategy to calculate the missing numbers in

This can also be supported using arrays: e.g. $3 \times ?=12$

Year 3 onwards

Partitioning for multiplication

Arrays are also useful to help children visualise how to partition larger numbers into more useful representation.
$9 \times 4=36$

9

Children should be encouraged to be flexible with how they use number and can be encouraged to break the array into more manageable chunks.
$9 \times 4=$

Which could also be seen as
$9 \times 4=(3 \times 4)+(3 \times 4)+(3 \times 4)=12+12+12$ $=36$
Or $3 \times(3 \times 4)=36$
And so $6 \times 14=(2 \times 10)+(4 \times 10)+(4 \times 6)=$ $20+40+24=84$

Year 3 onwards

Partitioning for division

The array is also a flexible model for division of larger numbers
$56 \div 8=7$

Children could break this down into more manageable arrays, as well as using their understanding of the inverse relationship between division and multiplication.
$56 \div 8=(40 \div 8)+(16 \div 8)=5+2=7$
calculations.
$\square \times 5=20$
$3 \times \Delta=18$
$O \times \square=32$
$24 \div 2=\square \quad 15 \div 0=3 \quad \Delta \div 10=8$

Year 3 onwards

Arrays leading into the grid method

Children continue to use arrays and partitioning, where appropriate, to prepare them for the grid method of multiplication. Arrays can be represented as 'grids' in a shorthand version and by using place value counters to show multiples of ten, hundred etc.
24×3

Year 4 onwards

Grid method

This written strategy is introduced for the multiplication of TO $\times \mathrm{O}$ to begin with. It may require column addition methods to calculate the total.

Year 3 onwards

Arrays leading into chunking and then long and short division

Children continue to use arrays and partitioning where appropriate, to prepare them for the 'chunking' and short method of division. Arrays are represented as 'grids' as a shorthand version.
e.g. $78 \div 3=$

$78 \div 3=(30 \div 3)+(30 \div 3)+(18 \div 3)=$ $10+10+6=26$

Year 4 onwards
The vertical method- 'chunking' leading to long division
See above for example of how this can be modelled as an array using place value counters.
$78 \div 3=$

78	
$-\quad 30$	
	(10×3)
$-\quad 30$	(10×3)
	18
	18

So $78 \div 3=10+10+6=26$

